
DragginMath was designed to help you understand algebra
on your iPad. We hope you are doing algebra on paper at the
same time. Most of what you write in DragginMath looks the
same as what you write on paper, except perhaps that it is neater.
A few things look a little different, and you will have to make
minor mental adjustments as you move between your iPad and
your math books. We can wish they looked exactly the same in
all ways, but some wishes just won't work the way we want.
This is one of those.

Why can't they all look the same? Because you can make
any marks you like with pencil and paper, and you can arrange
them any way you like. The traditional notation of mathematics
makes good use of that. But when people started writing math
on computers in the 1950s, the only way to write anything on a
computer involved machines you have probably never seen: the
teletype and keypunch. These can't make any marks you like,
and they arrange marks in only one way: in a straight line.
People had to find ways to write mathematics with only 95
characters, all of the same size and all written in a line. Here are
those 95 characters:

 ! “ # $ % & ‘ () * + , - . /
0 1 2 3 4 5 6 7 8 9 : ; < = > ?
@ A B C D E F G H I J K L M N O
P Q R S T U V W X Y Z [\] ^ _
` a b c d e f g h i j k l m n o
p q r s t u v w x y z { | } ~

As computer designs matured, it became possible to write
more than just those 95 χ𝛼ρ𝛼ϰτερς, to have subscripts and superscripts
and different fonts, to write math like one reads math in
textbooks. Writing standard typeset math notation on a computer

https://en.wikipedia.org/wiki/Teletype_Model_33
https://en.wikipedia.org/wiki/Keypunch

is now possible for the average user. But telling your computer
to make these marks on the screen is not the same as doing the
math. Simpler notations, developed in the early days of
computer programming, are still preferred when interacting with
computer programs. That includes the computer program you
are using now: DragginMath.

Differences from standard textbook notation were not
undertaken lightly when designing this app. Such differences
have to accomplish these things:

▪ They have to make more sense than the alternatives.
▪ They have to be easy to draw, if you need to draw them.
▪ They have to increase the reach of what DragginMath can

do.

We hope you agree: the differences are small and worth the
effort on your part.

Variables

You can think of a variable as a bucket or a box with a
name painted on the outside and a number hidden inside. In an
equation, a variable behaves like a number, even if we don't
know which number it is. In DragginMath, as in most of
traditional mathematics, variable names are always single
lowercase letters. The usual example is x.

Multiplication ∗

Multiplication is written several ways in traditional math
books. For example:

ab a×b a·b

These all mean the same thing: a times b. But there are
problems. That implicit multiplication, ab, is convenient when
you multiply a variable by a variable, or a number by a variable.
But it doesn’t work when you multiply a number by a number.
For example, 23 always has to mean twenty-three, not two times
three. And if you are writing on paper and your handwriting is
less than excellent, it may be hard to know if a×b means a times
b, or maybe a times x times b. If you write a dot to multiply 2·3,
it may be hard to know if that is what you meant, or if it was
supposed to be a decimal point instead.

When computer programming languages were first
developed in the 1950s, designers often chose the asterisk ∗ as
the multiplication symbol. This is convenient because it is one
of the characters on a standard mechanical keyboard. The
asterisk became the multiplication symbol in most computer
software, and DragginMath does this, too: a∗b. Even some
school books have caught up with the times and teach this now.

People often say star when they mean asterisk. It is easier
to pronounce.

In DragginMath, you can write implicit multiplication, ab,
in most situations where implicit multiplication traditionally
works. There are some situations where explicit multiplication
must be written, for example: 2∗3, a∗↑b, a∗√b, a↓∗b. The last
three cases are because the raise↑, root√, and log↓ operators
have both binary and unary forms, so a√b and a∗√b don't mean
the same thing in DragginMath. If you don’t know what all
those words or symbols mean, you will soon.

You will never see implicit multiplication in DragginMath

diagrams, where it would serve no purpose. In a diagram,
multiplication is always drawn with ∗ regardless of how you
typed it in.

Division ÷

Division and fractions mean the same thing. When writing
algebra on paper, always write division like this:

1-a2bc3

4de5+6

This way of writing fractions is helpful when doing algebra
on paper. But when writing math as we do on a computer, all on
one line, this has to change. DragginMath was designed to show
algebra in a particular way on an iPad screen, and this isn't it.
Always remember: how algebra looks and what algebra means
are not the same thing. It can be written many different ways,
but it always means the same thing. It is OK to write it one way
on a computer and another way on paper as long as you
understand what it means.

Most computer software uses the slash / to represent
division. DragginMath uses the obelus ÷ instead. It is easier to
read in the diagrams, and this is what you will find on the screen
keyboard. If you have a hardware keyboard attached to your
iPad, you may enter / for division, which converts to ÷
automatically.

Note that / is one of the 95 characters, but ÷ is not.

Raise ↑

Traditional mathematical notation represents raise
(exponentiation) as xn. Other arithmetic operators + – ∗ ÷ have
explicit symbols, but raise is traditionally represented, not with a
symbol, but with this typographic convention: xn. You are
expected to figure out which operation is there because of how
the characters are written, where the larger character on the left
is the base, and the smaller character up and to the right is the
exponent.

Today’s computers can make characters that look like that.
But typing it on a keyboard is still cumbersome, so most
computer software represents raise differently. DragginMath
represents xn as x↑n. You can find the ↑ character on
DragginMath’s screen keyboard. If you have a hardware
keyboard attached to your iPad, you may enter a caret ^ for
raise, which converts to ↑ automatically. The use of the caret for
raise is not as common as the use of the asterisk for
multiplication, but you are still likely to encounter it elsewhere:
in most spreadsheets, some programming languages, and
Google's calculator feature. If you find yourself using unfamiliar
computer software and you don’t know its symbol for raise, the
caret is a good bet.

Note that ^ is one of the 95 characters, but ↑ is not.

Root √

Some operations are traditionally represented with special
symbols and typographic conventions working together. For
example, √ represents the square root (2nd root), ∛ represents
the cube root (3rd root), ∜ represents the 4th root, etc. For the
most commonly used roots, this is fairly easy to type these days.

http://www.google.com

But if you need the (3x+4)th root, that may be hard to type even
if you know what you're doing. DragginMath solves this
problem by thinking of √ as an operator instead of as a
traditional function that just happens to be written with the
special character √ (called a radical). As a binary operator, n√x
means the nth root of x. This is different from traditional
notation, in which n√x means n times the square root of x. If
that is what you want in DragginMath, then write n∗2√x or
n∗√x (be sure to read about Unary Operators, below). We
couldn't get around this without crippling DragginMath.

Note that √ is not one of the 95 characters. Until recently,
roots had to be written on computers by spelling them out,
usually abbreviated as sqrt(x) or cbrt(x) or something
like that. In most computer software, they still are.

Log ↓

As with roots, traditional notation represents logarithms
with symbols and typographic conventions: ㏒nx. DragginMath
represents logarithms as an operator using ↓. Why? Because
log↓ is the inverse of raise↑. As a binary operator, x↓n means ㏒

nx (log base n of x). So if you want ㏒10x (the common log),
write x↓10. As a unary operator, x↓ means㏑x (the natural log).
This is a postfix unary operator: it comes after the thing it
operates on (be sure to read about Unary Operators, below).

Note that ↓ is not one of the 95 characters. In most
computer software, logarithms are written by spelling them out,
usually abbreviated as log(n,x) or ln(x).

Factorial !

Factorial is traditionally written as a postfix unary operator:
n! The definition is n! = n∗(n-1)∗(n-2)∗…∗3∗2∗1. On a current
iPad or iPhone, 20! is the largest factorial that can conveniently
be evaluated. Attempts to evaluate larger values will remain in
symbolic form. 0! is 1. Factorials of negative integers are all ?
(NaN, or Not-a-Number, see below).

Factorial has no widely accepted inverse, so attempts to
solve using factorial will quietly fail.

Absolute Value ‖
Absolute Value is traditionally written with vertical bar

notation, where the vertical |bars| act something like
parentheses, as in |x+3|. DragginMath uses ‖ as a unary operator
instead. We tried to do it the traditional way, but making that
work is incompatible with other important DragginMath
behaviors. Also, one can notice that no programming language
has ever implemented vertical bar notation. There is a reason for
that. Make a list of the parts of traditional notation that should
never have happened, and this is at the top of the list. That
doesn’t mean we can discard the idea of absolute value, but we
can legitimately want a different way to write it. DragginMath
chooses ‖. You can find the ‖ character on DragginMath’s screen
keyboard. If you have a hardware keyboard attached to your
iPad, you may enter a vertical bar | for absolute value, which
converts to ‖ automatically.

Note that | is one of the 95 characters, but ‖ is not. In most
computer software, absolute values are written by spelling them
out, usually abbreviated as abs(x).

Plus-and-Minus ±

Plus-and-Minus ± is closely related to the idea of absolute
value, being something like its inverse. If you ask DragginMath
to solve an equation containing ‖, it gives you an equation
containing ±, and vice versa.

DragginMath implements ± in both binary and unary
forms. Most operators create only one result, but ± creates two.
For example, ±3 means 3 and also ⁻3, and 7±2 means 9 and also
5. How do you see these dual results? Double-tap on the ± to
obtain two expressions: one for the + case, and one for the −
case.

Note that ± is not one of the 95 characters. It is often seen
in math, science, or engineering books. But even now, it is hard
to find computer software that deals with this idea at all.

Unary Operators

DragginMath diagrams are based on the concept of
operator trees. There are two operator categories here: binary
and unary.

Addition is an example of a binary operator. In traditional
notation, we write this as a+b, where the + symbol represents
the operator. Also, there are two operands, one on each side,
where an operand can be a number, a variable, or the result of
another operator. It is the fact that there are two operands that
makes + a binary operator.

For unary operators, there is an operator symbol and only
one operand. Depending on which operator it is, the operand
might come before the operator symbol (a prefix operator) or
after it (a postfix operator). DragginMath follows traditional

notation here in those cases for which a tradition exists. But in
some cases, DragginMath has to be inventive.

Binary and unary operators often come in pairs. An
example is – (dash), which can mean either subtraction (the
binary operator, as in a–b) or negation (the unary operator, as in
-b, which is properly read as negate b or the opposite of b).
Some people (and DragginMath) write those as two different
kinds of dashes, but most of us just figure it out from context.
Most unary operators look exactly the same as their binary
counterparts, while some are easily seen as different. You can
often think of a unary operator as being the same as its binary
counterpart but with an implied operand. An example is once
again –, where -b means the same as 0–b. Each unary operator
has its own implied operand. If it isn't what you want in a given
situation, you have to write the binary form.

Binary Unary Same As Unary Name
a–b -b 0–b Negate
a±b ±b 0±b Plus-and-Minus
a÷b ⅟b 1÷b Reciprocate
a√b √b 2√b Square (2nd) Root
a↑b ↑b 𝒆↑b Exponential

a↓b a↓ a↓𝒆 Natural Log

Note that 𝒆 in this table is the special number 𝒆
(approximately 2.71828…), not the variable e. Yes, there is a
very good reason for this. Expressions like 𝒆x are found all over
mathematics, physics, chemistry, biology, etc. And some say the
natural log, or log base 𝒆 (traditionally written㏑x or ㏒ex) is

the only log that matters, which is almost true. The number 𝒆 is
so important, it has its own key on DragginMath's screen
keyboard, right next to other special numbers like 𝛑
(approximately 3.14159...).

DragginMath can always tell the difference between unary
and binary operators, even when they have the same symbol. So
can you. Because of this, they do not have separate keys on the
screen keyboard. For example, if you enter ÷ when a unary
operator is allowed, you will get ⅟ instead. In DragginMath
diagrams, ⅟ appears as underlined 1.

If you ever need to convert a unary operator to its binary
counterpart in a diagram, flick down on it with your fingertip. To
convert a binary operator to its unary counterpart, drag the
implied operand you want to go away onto its operator.

Not all unary operators have binary partner operators.
Absolute Value ‖ and Factorial ! are examples.

Operator Precedence

For beginners, one of the most annoying things about
traditional mathematical notation is operator precedence, which
means that some operators stick together more tightly than
others. Whether this was ever a good idea or not can be argued,
but it is now a fixture in the way we write algebra, and in most
computer programming languages, too. After getting used to it,
most people decide that it isn't that bad, and might even be a
good thing. Maybe. Meanwhile, there it is, and it is about to
become a part of your life.

Here is an example: what is 2+3∗4? Don't look... Figure it
out... Do you have an answer now? Is it 20, or is it 14? Actually,

it is 14, because multiplication has higher precedence than
addition. That means multiplication sticks together more tightly
than addition, so you have to do the multiplication before the
addition. Why? Because...

If you insist on having an actual reason, here is one that
might do the job for you: until about two hundred years ago,
paper was really expensive and pens didn't work all that well.
Writing was costly and difficult. So some mathematicians tried
to make math easier to write. Using operator precedence, most
of what most people write most of the time in math takes a little
less paper, ink, and time to write. A little. Mostly.

Also, with some practice in reading, operator precedence
makes the structure of most equations easier to see, and the
structure of equations matters a lot. DragginMath was designed
and built to show you the structure of equations. It is the reason
this app exists.

Here is a simplified precedence table:

Parentheses ()
Negate Reciprocate (Unary only) - ⅟

Raise Root Log (Binary & Unary) ↑ √ ↓
Multiply Divide ∗ ÷

Add Subtract + –

That is the simplified table. The real table is a little more
complicated and needs more explaining. Showing all the details
of how operator precedence works is hard to do in writing. It is
better to see it happening, and DragginMath shows you how it
works, step by step, whenever you enter an expression.

Some people think implicit multiplication, ab, should have
higher precedence than explicit multiplication, a∗b, or division,
a÷b. For example, a÷bc would mean a÷(b∗c) instead of the

standard (a÷b)∗c. Some books are even written this way (mostly
physics books, and not even very many of those). Because this is
not standard, such books make a point of telling you about it
right away. If you encounter a book like this, you will have to be
mentally flexible enough to deal with it. We experimented with
making this something you could choose in DragginMath, which
does interactive algebra. It caused problems that math doesn’t
have when it is just sitting there on paper. We took this feature
out.

Remember: this issue of operator precedence is only about
how we traditionally write algebra. There are other ways it
could be written, and there can be good reasons for wanting to
write it differently. But knowing how to read and write the
traditional notation allows us to communicate freely across the
current mathematical world, several hundred years into the past
and probably at least that far into the future. Nevertheless, how
we write algebra has little to do with what algebra means.

Numbers

There are many different kinds of numbers. DragginMath
only knows how to work with integers: the positive and negative
whole numbers. This is intentional.

Arithmetic as a computer does it and arithmetic as algebra
does it are not really the same thing. For example, in an algebra
class, √50 is not 7.071067..., it is 5∗√2. This is a shock to some
people, but holding a calculator in your hand will never be a
substitute for understanding algebra. DragginMath tries hard to
do algebra-style arithmetic, which is not something computers
do any more naturally than you do. And because arithmetic is
infinite and this is a finite computer, there are practical limits on

what DragginMath can do. In particular, if you ask DragginMath
to divide very large integers or reduce their roots, you may run
into problems. DragginMath keeps something called a
Factorization Cache, which can consume a lot of computer
memory. If you decide you want to find the limits of
DragginMath, you will succeed, probably because you exploded
the Factorization Cache. But that will not do anything for you
that really needed doing, and you will have to restart
DragginMath afterward to make it usable again. If you use
DragginMath to work on the problems typically found in algebra
textbooks or in real life, you will not have such difficulties.

It was mentioned earlier that – (dash) means two things in
standard notation: subtraction and negation. Actually, it means
three: subtraction, negation, and negativity. Subtraction and
negation apply to both numbers and variables, but negativity
only applies to actual numbers, for example, ⁻7. It is a property
of the number itself, called its sign.

If you encounter a number with a negative sign attached to
it, you can convert the sign to the equivalent unary operator by
flicking down on the number. To collapse unary operators back
into a number, drag and drop the number up over those
operators. Any redundant operators are automatically and
correctly removed.

Some families have secrets they would rather not talk
about, and the family of Numbers has those, too. For example,
what is 1÷0? A typical answer from a typical math teacher is that
1÷0 is undefined, at which point a typical math student is
expected to go away and not ask more questions like that. But
computer programmers actually need an answer to that question.

Without it, computers halt, important machinery misbehaves,
money is lost, and people get hurt or die. Really. And then there
is a related question: what is 0÷0? That is undefined, too, but it
is a different kind of undefined. Things like this will become
increasingly visible to you in your life, because the computers
you use every day deal with these things now, even if traditional
mathematics (with good reason) doesn't like to.

In DragginMath, for any x > 0, x÷0 = ∞. That sideways-8
symbol represents Infinity, otherwise known as Really Really
Really Large. In some ways, ∞ behaves like a number. In other
ways, it doesn't. For example, ∞+1 = ∞, ∞–1 = ∞, ∞∗2 = ∞, ∞÷2
= ∞, and other strange things. But 1÷0 is not undefined here. It is
∞. Some other operations with the wrong operands result in ∞,
also.

In DragginMath, 0÷0 = ? That question mark represents
Not-a-Number (or NaN). This name, Not-a-Number, may not be
the best name for this idea, but the people who invented this
name couldn't think of a better one, and they tried. ? is even
stranger than ∞. We know that ∞ is Really Really Really Large,
but we simply have no idea what ? is. It is not large. It is not
small. It is not positive or negative, real or imaginary. It may be
something, but whatever it its, it is Not-a-Number (it sometimes
turns out to mean any number or all numbers, but don't count on
it). Some other operations with the wrong operands result in ?
also. Any operator that is given ? as an operand returns ? as a
result. Usually, once ? appears in a computation, everything else
quickly becomes ? too.

This topic is larger than we can talk about here. But ∞
and ? give us ways to talk about things we otherwise could not
talk about at all. Do not let this make you complacent about
these things. If you ever encounter ∞ or ? in DragginMath or

https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/IEEE_754

anywhere else, this is probably something you need to think
about, and maybe even worry about. But at least your worries
will not be undefined.

