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 DragginMath is an iPad app for teaching, learning, and 
doing algebra. It converts equations into interactive pictures. 
Then you can solve your equations by literally dragging math 
around on the screen. Sounds simple, right? 
 Actually, it is. If there is a problem, it is that DragginMath 
does so much math just by dragging it around on the screen. 
 Can you learn to use DragginMath just by playing around 
with it? I like to think so, but I created it. Your answer might not 
be the same as mine. Perhaps you are one of those people who 
enjoys the experience of discovery, but most people want a more 
direct path to understanding DragginMath. 
 So let me help you out. 

Who Is Reading This? 

 One of the challenges of writing a Guided Tour like this is 
trying to guess who will be reading it. Are you a student who is 
just getting started in algebra? Are you a parent who is trying to 
help a child? Or are you a professional math teacher who hopes 
to use this app in the classroom? Each of these different people 
might need a different Guided Tour. But for now, there is only 
this one. 
 Whoever you are, I will not assume you are a genius, or 
that you already know a lot of math. But we have to start 



somewhere. I will assume you are at least basically sensible and 
intelligent. You probably are, and that is all you need to operate 
DragginMath. I will also assume you already know some math: 
basic arithmetic and the language that goes with it. 
 So let me ask you some questions. Do you know what a 
reciprocal is? A root? A logarithm? Do you know (or think you 
know) how operator precedence works? Are words like 
commutative, associative, or distributive familiar to you? Do 
you know the rules of exponents? If you already know what 
these words mean, that’s great. If you don’t, let me suggest you 
view this as an opportunity, not a deficiency. Reading this will 
help to introduce these concepts to your mind. This document is 
not a substitute for real math instruction, which DragginMath 
was designed to assist, not to replace. So if you encounter 
unfamiliar words or concepts in this Guided Tour, learn what 
you can from it, which might mean no more than becoming 
aware that these words and concepts exist. Then seek out deeper 
understanding from someone who already knows the math. 
When you come back to the Guided Tour, you will be ready to 
use DragginMath in ways you could not have done before. On 
the other hand, if you are a math teacher, you already know the 
words, the concepts, and the math, although working through it 
with DragginMath may show you some things that are new to 
you. The process of designing this app certainly showed me 
some things that were new to me. 

DragginMath Is Not Math On Paper 

 Another challenge in writing a Guided Tour like this comes 
from DragginMath’s very nature: the words in this document 



just sit there on the page, but DragginMath is about math in 
motion. I can describe what to look for, then what to do, then 
what to expect, but you still have to see the right things when 
they happen. This is hard to convey convincingly in print. Live 
demonstrations are better, but you may not have that option. 
Here on paper, we will do the best we can. 
 There is a DragginMath channel on YouTube. The videos 
there can make much of this more clear. But people have asked 
for a written Guided Tour, so here it is. 

Two Aspects of Learning Math 

 Learning math is actually two things: learning what math 
means, and also learning how to write it. These two things are 
related, but they are not the same. I could talk at length about the 
difference, and I have done so elsewhere. But that is not what 
this Guided Tour is about. 
 DragginMath is mostly about one way math can be written. 
This is not the way math is usually written. But the way math is 
usually written is less helpful and even troublesome for many 
people when they first learn algebra. By learning to read and use 
this different way of writing and doing algebra, you will gain a 
better understanding of what the traditional way of writing 
algebra is telling you. Then you can move forward with greater 
ease, assurance, and success. The alternative can be and often is 
to simply give up. DragginMath helps you, your child, or your 
students avoid that awful fate. Using this app is not a guarantee. 
But it is a powerful tool to help you achieve a valuable goal. 



Getting Started 

 When you start DragginMath for the first time, there are 
two pale grey labels near the top of the screen. After you have 
used DragginMath even once, you will never see those labels 
again, so pay special attention to them now. 
 One label says “Tap Here to Learn How.” There is also an 
arrow pointing up toward ℹ  in the upper left corner of the 
screen. That ℹ  is called an Info button. These are found in many 
places throughout DragginMath. Perhaps you have seen these, or 
something like them, in other apps. They exist to explain things 
to you. Tap that button now. 
 Did you see the screen change? 
 Here is a whole list of interesting topics, each with its own 
ℹ . Tap the first ℹ  on this screen. 
 Did you see the screen change again? 
 Read this short article now on your screen. It is called 
“How to Read This”. If an ℹ  article is short, it may fit on one 
screen. If it is longer, swipe up and down on it with a finger to 
see the whole thing. When you finish reading, tap OK at the 
bottom. 
 Did you see the screen change back? 
 Whenever you finish reading an ℹ  page, tap OK at the 
bottom. This takes you back to whatever you were doing before 
you asked to read the ℹ  page. There are other places in the app 
where you need to tap OK when you are finished with some 
particular task, so get used to doing this. 
 At this point, you are back to the screen with the list of 
articles that describe DragginMath, how to use it, and why it is 



the way it is. If you want to read more of these now, go ahead. 
Or you can come back and read them some other time. That 
information really is helpful and good to know. But this Guided 
Tour is probably all you need to think about right now. 
 Do you need to read this Guided Tour all at once? No. Let 
me suggest that you read some of this, play around with 
DragginMath a little to get a better understanding of what you 
just learned, then come back later to read more. 
 Tap OK again to get back to DragginMath’s main screen. 
This is where you will do most of your work. Notice the grey 
label in the text field at the very top of the screen. It says “Tap 
Here to Start Working.” So do that now. Whenever you are done 
working on a problem in DragginMath, tap the text field at the 
top to erase the screen and start working on the next problem. 
 If you are part way through a problem and then decide to 
do something else, just switch to another app, or even put your 
device to sleep. The problem you were working on will still be 
there when you return, just as you left it. If you kill the app, it 
won’t still be there, but most people don’t do that very often. 
 If you decide you want to kill the app, tap twice quickly on 
your device’s home button. See small versions of the screens of 
all running apps. Find the small DragginMath screen, then swipe 
up on it. This kills the app. You can restart it any time by tapping 
the DragginMath icon again on your home screen. 

Introducing the Screen Keyboard 

 When you tap in the text field at the top, a screen keyboard 
rises up from the bottom. It has all the characters you need to 
operate DragginMath. If a hardware keyboard is attached to your 



iPad, you can type on that, too. A hardware keyboard can be 
easier to use than the screen keyboard, but it doesn’t have all the 
characters you need. We will return to discuss more features of 
the screen keyboard from time to time. 

Entering Expressions 

 Let’s start with something basic: enter 2+3+4. As you type, 
notice things happening elsewhere on the screen. Some kind of 
picture is forming there. That picture is called an operator tree. 
Most of the work you do with DragginMath involves operator 
trees. This app exists to let you see and work with them. Later in 
this Guided Tour, we will talk about how they are made and why 
that is useful to know. 
 If you happen to enter something incorrect, such as 2++, 
the text field flashes red and your device (((beeps))). Notice that 
the incorrect character was not accepted. You may only enter 
expressions that are correct. Being correct doesn’t mean you 
have not made a mistake. In this context, a mistake is when you 
enter a character you didn’t intend, but it still follows the rules 
of math syntax, such as 2+6 when you wanted 2+3. If you make 
a mistake, use the ⬅  key to back up. If you decide you want to 
simply start over, flick your fingertip sideways off the ⬅  key to 
erase the whole line. 
 You may add or delete characters only at the end of the text 
field. Cutting or pasting anywhere else is not allowed. The app 
reads and analyzes what you enter as you enter it, so it would 
become confused if you could type anywhere other than the end. 
 When you finish entering your expression, tap the ↵ key, 
which is like the return key on a hardware keyboard. This 



finishes the construction of the operator tree, which then moves 
to the middle of the screen. 
 If your expression has open parentheses that you haven’t 
closed, DragginMath quietly does that for you. But if your 
expression is otherwise incomplete, the text field flashes red and 
your device (((beeps))). Remember that you may only enter 
expressions that are correct, which includes being complete. 
 If you have an incomplete expression and you decide you 
are no longer interested in it, flick your finger sideways off the 
⬅  key. Just as before, this erases the whole line. You may then 
tap the ↵ key with an empty text field, and the screen keyboard 
politely goes away. If you still have an incomplete expression 
lying around, it won’t. 

Talk About Trees 

 Everything interesting about DragginMath involves the 
operator trees mentioned in the previous section. That means 
your life will be easier if you learn some basic words we can use 
to talk about them. 
 A tree has a root, branches, and leaves. In the usual mental 
picture of a tree, these grow and spread upward. But tree 
diagrams can be drawn in other directions, too. They might be 
drawn growing and spreading from left to right, or from right to 
left, or from top to bottom. For specific uses, you might prefer 
one of these directions over the others. But the way a tree is 
connected doesn’t change, regardless of which direction it 
grows, and it is only this connectedness that matters. 
 In DragginMath, trees are drawn so they grow from top to 
bottom. The place from which the tree grows is called the root, 



even when it is at the top of the picture. The root is a special 
case of a tree node. A branch connects two nodes. In a tree, 
branches can only spread out: they never come back together. 
Nodes and branches can lead to other nodes and branches, which 
can lead to even more nodes and branches. The length of a 
branch doesn’t matter in these pictures. Only the fact that a 
branch exists matters. So branches can be any length, and we 
draw them at whatever length makes the picture simple and 
compact. When a node has a branch coming in, but no branch 
going out, that node is called a leaf. A tree can have many 
leaves, but only one root. 
 Other words that are useful are parent and child. The root 
node of a tree can have children, but it has no parent. A leaf node 
has a parent, but it has no children. Nodes that are neither root 
nor leaf are sometimes called internal nodes. Each of these has 
one parent and one or more children. 
 Another important word is subtree. Any node in a tree is 
the root of its own subtree, which is a tree in its own right. 
 When discussing algebra in DragginMath, we will often 
talk about roots, nodes, and leaves, and parents and children, and 
subtrees, and the roots of subtrees. We need these words because 
algebraic expressions are in fact trees of operators and operands, 
even though they are traditionally written as a line of symbols. 
Understanding this is the start of your success in algebra. It is 
the reason DragginMath exists. 
 One of the major issues in teaching or learning algebra is 
operator precedence. This is the hierarchy of operations found 
in algebraic expressions. Rather than hoping you can look at a 
line of math symbols and see the hierarchy in it, DragginMath 



simply shows you the hierarchy as a tree diagram. Then you can 
move its nodes around to make algebraic changes. 

Introducing the Commutative Property 

 If you successfully entered 2+3+4↵, you now have a 
completed operator tree. So let’s do some algebra. 
 Put your finger on the 2. Notice a red circle around your 
fingertip. The red circle tells you that DragginMath knows you 
are touching the 2. Drag your finger straight to the left for a 
ways, then lift your finger. The circle disappears, and the 2 floats 
back to where it came from. Other than this, nothing happened. 
Nothing is wrong here: this is typical DragginMath behavior. If 
your drag gesture does not identify a legitimate algebraic 
change, nothing happens, and the parts that moved simply return 
to wherever they came from. 
 Put your finger on the 3. Notice the red circle again. Drag 
your finger straight to the right for a ways, then lift your finger. 
The 3 floats back where it came from. Nothing happened. Once 
again, nothing is wrong here: that’s what DragginMath does 
when nothing is supposed to happen. 
 Put your finger on the 2 again. Notice the red circle. Drag 
your finger straight to the right this time. When your fingertip 
passes the 3, the red circle turns purple. DragginMath is now in 
Purple Mode. Being in a mode (there are four) intentionally 
limits the actions DragginMath can perform. This is an 
important part of this app’s design. Once that red circle changes 
color (to purple in this case), it remains that color, and remains 
in that mode, until you lift your finger. 



 See that the 3 has moved to where the 2 used to be. Lift 
your finger and see the 2 move to where the 3 used to be. This 
algebraic change is now complete. What is the name of this 
algebraic change? This is the Commutative Property of 
Addition. 
 Look at the text field at the top of the screen. Before the 
change you just caused to happen, it read 2+3+4. Now it reads 
3+2+4. Any time DragginMath changes the structure of an 
operator tree, the text equivalent of its new form appears in 
the text field at the top. 
 Put your finger on the + that joins 3 and 2. Drag right until 
the red circle turns purple. Lift your finger. Once again, this 
change is due to the Commutative Property of Addition. The text 
field at the top now reads 4+(3+2). 
 So DragginMath can commute simple operands of addition, 
such as 2. It can also commute compound operands that are the 
result of other operations, such as (3+2). 

Introducing the Associative Property 

 In 4+(3+2), drag the + that joins 3 and 2, dropping it on the 
+ at the top. This motion requires you to drag up, which puts 
DragginMath into Blue Mode, where it can do things that Red 
Mode and Purple Mode cannot. Once the app enters Blue Mode, 
it stays in that mode until you lift your finger. 
 You can only drop a tree node onto another tree node 
when DragginMath says you are on target. It does this in four 
ways, all at once: 
 1) It clicks. 
 2) The entire screen background changes color slightly. 



 3) The drop target is boldly outlined in black. 
 4) The 🎯  icon appears in the upper left corner. 
If you are on target and then your fingertip moves away, you are 
off target. DragginMath says you are off target in four ways, all 
at once: 
 1) It clicks, but at a lower pitch. 
 2) The background changes back to white. 
 3) The black outline around the drop target goes away. 
 4) The 🎯  icon disappears. 
If you are dragging and you lift your finger when off target, 
whatever you were dragging will drift back to wherever it came 
from. As was mentioned earlier, this is normal DragginMath 
behavior. 
 When you dropped the lower + onto the upper +, did you 
see the change that happened? What is the name of this algebraic 
change? This is the Associative Property of Addition. 
 Look at the text field at the top of the screen. Before the 
change, it read 4+(3+2). Now it reads 4+3+2. More important: 
the structure of the operator tree has changed. When using 
DragginMath, it is the operator tree that matters. 

What Algebra Is & What DragginMath Does 

 Many people never gain a good understanding of what 
algebra is. With this example, we can clear that up. Algebra is a 
set of tools for changing the structure of a mathematical 
relationship without changing its meaning. That is what 
algebra is, and that is what DragginMath does. 
 At first glance, DragginMath appears to be a way to move 
math symbols around on the screen. But that is not what it does. 



DragginMath restructures algebraic relationships on the screen, 
which is something different. It only makes changes in structure 
if they don’t change meaning. The only actions it performs 
correspond exactly to known algebraic properties. When you ask 
it to change something, it either makes the entire change or none 
at all. 

About Those Other Buttons 

 The first thing you learned about DragginMath was the ℹ  
button in the upper left corner. It raises the primary info screen, 
which leads you to several pages that can help you understand 
DragginMath better. Some of that information overlaps this 
document, although it is organized differently. Do not assume 
reading this document makes those others unnecessary. 
 But ℹ  on the main screen isn’t always there. That space is 
sometimes taken by 🕑 , which can tell you how many moves, 
changes, and seconds you have used on the current problem. To 
see ℹ  again, tap the text field at the top to raise the screen 
keyboard and bring back ℹ . And that same space is used for the 
🎯  icon when you drag something on target. 🎯  goes away again 
as soon as you either drop or drag off target. 
 ↩  and ↪  are Undo and Redo. Undo reverts to the previous 
state of your work. It can do this, one step at a time, all the way 
back to the beginning of the current problem. Don’t confuse 
Undo ↩  with Backspace ⬅ , which only appears on the screen 
keyboard. Redo moves forward again, simulating what you do 
with your finger when you drag math around on the screen. This 
means you not only see the result of a step, you also see the 
move that caused it to happen. 



 ⬆  raises a screen that shows the History of your work. 
Here you can select the problems you have worked on recently, 
either from their start or from individual steps. You can edit your 
problem sets, even save them to files and email them. Look for 
ℹ  on the History screen to learn its use in detail. 
 When graphical user interfaces were first invented back in 
the 1970s, one of the first screen icons was ≡. Traditionally, this 
brings up a list of software settings or configuration switches. 
Someone thought this symbol looked like a hamburger, so it 
became known as “the hamburger button” (these days, some 
apps use a gear icon instead). DragginMath’s hamburger button 
is in the upper right corner. Tap it to raise a configuration screen. 
Each item on that screen has a separate ℹ . Be sure to read these 
to understand your choices in what DragginMath can do for you. 
Some of these issues are simple and obvious, while others are 
subtle or sophisticated. The default settings make DragginMath 
read, write, and do math most closely to traditional notation and 
behavior. As you become more familiar with DragginMath, you 
may discover good reasons to have it do things differently. 
 Imagine you are already working on a problem when you 
discover you need another expression on the screen to help you 
solve it. That’s what ; is about. It raises the screen keyboard so 
you can enter more text, creating another operator tree alongside 
whatever you already have on the screen. Notice there is a ; on 
the keyboard, also, so you can enter more than one expression at 
the outset if you know you’ll need that. 



More About the Screen Keyboard 

 If you want to be sure to make someone unhappy, all you 
have to do is design a keyboard. Any attempt to arrange all those 
little buttons into something sensible will meet with someone 
who disapproves of it. DragginMath is no exception. 
 The numeric keys are laid out just like those on any 
ordinary calculator. The basic operators on the side are like those 
on most calculators. Everything else is different. 
 DragginMath works on both iPad and iPhone. It does the 
same algebra the same way on both kinds of device. But the 
small screen on an iPhone makes a different keyboard layout 
necessary there, especially when working in the upright 
orientation. 
 On both kinds of keyboard, there are columns with colored 
spacers between the buttons. These columns can be swiped up 
and down to reveal more symbols. Look for a column of 
characters with ↑ at the top (on iPad, there are two such 
columns). Swipe lightly up and down to see everything that 
column has to offer, including the special numbers 𝛑 and e. As 
you use DragginMath, you will sometimes need to reposition 
this column to find the symbol you want. 
 You need to learn to do two things with these special 
columns: swipe them up and down, and tap the buttons they 
contain. A little practice may be required to do each of these 
actions reliably. 
 The iPad keyboard has a grid of all letters arranged in 
alphabetical order. The iPhone keyboard has two columns of 
letters that can be individually swiped up and down. In their 
initial positions, one column shows abc; the other shows xyz. 



These are the letters used most often in algebra, but you can 
swipe the columns to find any other letters you might need. 
 🔠  is the shift key. You will only need this for an advanced 
feature described later. Be sure to read the ℹ  in the lower left. 

Trees Into Text and Back Again 

 Operator trees really do mean the same thing as traditional 
math notation, but some people aren’t sure about that and need 
persuading. Also, trees take a lot of space on the screen. 
 You can convert any tree or subtree into linear text by 
flicking up on its root. When you do this, parentheses may be 
added to the text to preserve operator precedence. Convert it 
back to a tree by flicking down on it. Flick with a light touch. 
 Once in its text form, a node can be dragged around in that 
form. Most other interactions with such a node will cause it to 
turn back into a tree without flicking. What you can’t do with a 
node in text form is drag or target the parts inside it. 

More About the Associative Property 

 This app allows you to make experiments safely and freely. 
DragginMath converts algebraic expressions into playthings. 
So let’s play. 
 In the previous example, we used the Commutative and 
Associative Properties of Addition to rearrange an operator tree. 
In this example, we will use the Associative Property of 
Multiplication, which works the same way as the Associative 
Property of Addition. In the previous example, we used the 



Associative Property in a small way. In this example, we will 
use the Associative Property in a big way. 
 Tap the text field at the top of the screen, then enter 
abcdefg↵. This expression means we could multiply these seven 
variables together if we knew their values. We don’t know their 
values, but there are other things we can do, and writing this 
expression gives us something concrete to look at, talk about, 
and work on. 
 In the operator tree, notice the asterisk ∗ symbol, which 
means multiply. Use of this symbol for this purpose originated in 
computer programming. DragginMath won’t ask you to program 
computers, but it will ask you to use the asterisk symbol, which 
is increasingly common in mainstream math. You may use ∗ 
when you enter an expression, for example, a∗b∗c∗d∗e∗f∗g. 
You may also use implied multiplication in many situations, for 
example: abcdefg. Regardless of how you enter an expression, 
you will always see ∗ in operator trees containing multiplication. 
It is only in the text field at the top that you might not see it. 
Under the hamburger button ≡, there is an option setting that 
gives you some control over this. Read the ℹ  there to learn 
about it. 
 Touch the ∗ attached to f. Drag it onto the topmost ∗. 
 Touch the ∗ attached to e. Drag it onto the topmost ∗. 
 Touch the ∗ attached to d. Drag it onto the topmost ∗. 
 Touch the ∗ attached to c. Drag it onto the topmost ∗. 
 Touch the ∗ attached to b. Drag it onto the topmost ∗. 
 After all these changes, the operator tree means the same 
thing it meant when we started. Notice what you didn’t have to 
do: redraw the operator tree after each change. DragginMath 
does that for you, quickly and correctly. 



 Touch the ∗ attached to g. Drag it onto the topmost ∗. 
 Touch the ∗ attached to a. Drag it onto the topmost ∗. 
 Touch the ∗ attached to g. Drag it onto the ∗ attached to d. 
 Touch the ∗ attached to e. Drag it onto the topmost ∗. 
 Using the Associative Property, you can make complicated 
operator trees that branch arbitrarily left and right. When you 
make sweeping association changes across multiple nodes, 
DragginMath tends to order them in linear chains. Still, you 
might have to associate more than once to fully straighten out 
some complicated trees. 

More About the Commutative Property 

 You have already seen how the Commutative Property 
works for expressions like 2+3+4. It also works for expressions 
like a∗b∗c. You expect this because addition and multiplication 
are commutative. 
 What happens if you commute a−b? You might expect that 
DragginMath will do nothing because subtraction is not 
commutative: a−b ≠ b−a. But DragginMath is an environment 
in which you can try things to see what happens. So try 
commuting a−b the same way you would commute a+b: drag 
one of those operands sideways past the other. 
 Yes, you can commute a−b with a result of -b+a. This is 
sometimes called turning subtraction into addition. What 
happens if you commute this resulting addition? Try it and find 
out. What happens if you drag the - onto the +? Try it and find 
out. How do you learn if DragginMath can do something useful 
when you move tree nodes around in particular relationships? 
Here is a good general answer: try it and find out. 



 So even though subtraction is not commutative, it is still 
commutable: the app knows how to make all the necessary 
changes, safely and reliably. The word commutable is probably 
not found in any math book, but we need a word like this to talk 
about DragginMath. It’s not that DragginMath has invented 
some new kind of math. But it does make some aspects of math 
more explicit. That’s what makes it a good learning tool. 
 What happens if you commute a÷b? You might have 
conflicting expectations now. Division is not commutative, but 
can it be commutable? What would that look like? Try it and 
find out. 
 Yes, DragginMath can turn division into multiplication, just 
as it can turn subtraction into addition. The ⅟b∗a you see on 
your screen includes a unary division (reciprocate) operator, 
exactly analogous to the unary subtraction (negate) operator. 
This appears as ⅟in the text field and in operator trees. ⅟is not 
the number 1. It is an operator, which means that it does 
something. This unary division operator divides a number into 1, 
just as the unary subtraction operator subtracts a number from 0. 
 Perhaps you have never thought about the existence of a 
unary division operator before. This is one of several things our 
traditional math notation obscures from us. If you are already 
experienced with algebra, you have used this idea many times, 
perhaps without realizing it. In DragginMath, it can’t hide any 
longer. If it weren’t there, you would notice that and wonder 
why it didn’t exist. Now it does. 
 Can you enter this operator from the keyboard? Yes, you 
can. Think about how you enter a negate operator from the 
keyboard: DragginMath knows from context whether − is 



negate or subtract. It also knows from context whether ÷ is 
reciprocate or divide. 
 Incidentally, if you have a hardware keyboard attached to 
your iPad, you can use the slash / character for either kind of 
division. It automatically converts to ÷ or ⅟ at the right time. 

Still More About the Associative Property 

 You have already seen how the Associative Property works 
for expressions like 2+3+4. It also works for expressions like 
a∗b∗c. You expect this because addition and multiplication are 
associative. 
 If what you just read sounds familiar, maybe even 
repetitive, there is good reason for that. 
 What happens if you reassociate 2–3–4? You might expect 
that DragginMath will do nothing because subtraction is not 
associative: 2–3–4 ≠ 2–(3–4). But try reassociating 2–3–4 the 
same way you would reassociate 2+3+4: drag the lower – up 
into Blue Mode, then drop it on the upper −. 
 Yes, you can reassociate 2–3–4 with a result of 2–(3+4). In 
the previous discussion of commuting 3–2, we could talk about 
turning subtraction into addition even though subtraction is not 
commutative. As far as I know, there is no name or phrase for 
what we just did with 2–3–4. People who learn algebra well 
know this can be done, but we don’t have a convenient name or 
phrase to talk about it. 
 So even though subtraction is not associative, it is still 
associable: the app knows how to make all the necessary 
changes, safely and reliably, for all combinations of + and –. 
This works even when they appear together in long chains, such 



as 2+3−4+5−6+7−8. This word associable is probably not found 
in any math book, but we need a word like this to talk about 
DragginMath. Once again, it’s not that DragginMath has 
invented some new kind of math. But it does make some aspects 
of math more explicit. 
 What happens if you reassociate 2÷3÷4? Division is not 
associative, but can it be associable? What would that look like? 
Try it and find out. 
 Yes, DragginMath can do this, too, and with expressions 
much more complicated than this. After your last several 
experiences with the app, perhaps this is no longer a surprise. 

Introducing the Distributive Property 

 We started with the associative and commutative behavior 
of DragginMath because these are the foundations of algebra, 
which also means they are the foundations of the behavior of the 
universe. Really. 
 What’s next? Let’s look at the Distributive Property. 
 You know that 3∗9 = 27. Observing this fact from a 
different angle, this also means that 3∗(4+5) = 27. Drag the + up 
into Blue Mode, then drop it on the ∗. DragginMath just told you 
that 3∗(4+5) means the same thing as 3∗4+3∗5. This works for 
any numbers: a(b+c) = ab+ac. 
 The full name for this is the Distributive Property of 
Multiplication Over Addition. It also works for multiplication 
over subtraction: a(b–c). Try it to see how that works. It also 
works for division under addition or subtraction: (a+b)÷c, but 
not for division over addition or subtraction: a÷(b+c). Try both 
of these to verify that the first one does something, but the 



second one does nothing. Is there a Distributive Property of 
Addition Over Multiplication? Enter a+(b∗c), then drag ∗ up 
onto + to find out. 
 Distribution can be invoked in two different ways: general 
and specific. The general way assumes you want operands 
distributed as far as they can be. The specific way assumes you 
want them distributed only to specific places you will indicate. 
 To see general distribution, enter a(b+c+(d+ef)). Drag the 
topmost + onto the ∗ attached to a. DragginMath looks under 
that topmost + for any other addition or subtraction operators, all 
the way down all branches of the tree, and distributes to their 
operands. If it encounters any other kinds of operators on its way 
down the branches of the tree, it stops. With general distribution, 
DragginMath does all of the work, finding all distributions that 
can correctly be done in that subtree of operators. General 
distribution happens when you drag up from the topmost + or – 
under ∗ or ÷. 
 To see specific distribution, enter a(b+c+(d+ef)). Drag the 
+ attached to b (not b itself) onto the ∗ attached to a. In this 
case, you have told DragginMath where to stop distributing. It 
will distribute down to that node, but no farther. To do this 
correctly, it may have to distribute to side branches also, but not 
inside them. For example, notice that the distribution of a did 
not get inside the (d+ef) branch for this specific distribution, but 
it did for the general form. 
 General distribution is usually what you want. But 
sometimes it is too much. In those cases, specific distribution 
can do exactly what you want, but it sometimes takes several 
steps to do it. 



 DragginMath can do multi-factor distributions. For 
example, enter ab(c+d–e)÷f. Look carefully at the structure of 
that tree. Drag – up onto ÷. Now look carefully at the structure 
of the result. 
 We have been discussing the Distributive Property of 
Multiplication (or Division) over (or under) Addition (or 
Subtraction). There are other kinds of distributive operations, 
but they aren’t usually called that. Many go under the general 
heading of Rules of Exponents, which we will encounter soon. 
Others have no generic name that I know of. Whether they have 
names or not, DragginMath can do both general and specific 
distribution for them. The drag-and-drop invocations follow the 
same patterns. Some can do multi-factor distributions, while 
others cannot. For those that cannot now, some might in the 
future, while others won’t ever because the math doesn’t work 
that way. In any case, if you want to know if DragginMath can 
do something, think up an example and try it. 

Introducing Factoring 

 If you can distribute things in DragginMath, can you also 
un-distribute them? Yes, you can. Of course, a better name for 
this is factoring. It comes in different forms, depending on what 
you want to factor, and what you want to factor it out of. 
 Enter x+x. Now drag either one of the xs up to deliberately 
enter Blue Mode. If you aren’t in Blue Mode, you will probably 
just commute the xs, which is not the goal here. But in Blue 
Mode, drop one x onto the other x, and the result is 2x. 
 That was a start. Let’s do something more interesting. Enter 
ax+ax+ax+ax+ax. Drag the bottom-left ∗ onto the topmost ∗. In 



this example, you don’t have to deliberately enter Blue Mode: it 
will just happen if you make the direct motion. The result is 5ax. 
 Inside DragginMath, this is called factoring by counting. 
 What if you have xa+xb and you want to factor out the x? 
Inside DragginMath, this is done by a completely different 
process (factoring by extraction), but it is invoked the same way. 
Once again, drag the bottom-left x up into Blue Mode, then drop 
it onto the other x. The result is x(a+b). 
 What about xa+xb–xc+xd? Drag the bottom-left x onto the 
topmost x. The result is x(a+b–c+d). Notice that the xb and xc 
terms were factored also, even though you didn’t actually 
interact with them. That’s because they were between the two 
terms you did interact with. If DragginMath encounters a term 
that does not contain the factor you asked to extract, the 
operation fails and the parts go back where they came from. 
 DragginMath can factor expressions much more 
complicated than this. 
 Paying attention to some details here can prevent 
frustration later on. To invoke factoring, you must be in Blue 
Mode when you drop. That might mean you have to drag up 
deliberately, if only to enter the mode. And here is another 
critical point. Most Blue Mode operations are invoked by 
dragging something up and dropping it onto the root of an 
operator subtree. Factoring is different. To invoke factoring, you 
must drop something onto an off-root node that is recognizably 
equal. 
 I know the language in the previous paragraph is kind of 
dense. I don’t know a simpler way to say it. Even complicated 
factoring operations are easy once you know how. But factoring 
is the most challenging aspect of learning to use DragginMath. 



Introducing Cancelling 

 Some of the things DragginMath does really are obvious. 
Some are obvious once you’ve seen them. A few things have to 
be explained and thought about a little. Factoring is one of these. 
Cancelling is another. The explanation that follows tells you 
how to cancel in DragginMath. It also gives you some 
understanding of why it was implemented this way. 
 Enter a+b. You know how to commute this addition: just 
drag one operand sideways past the other. You can see the 
structure of the expression has changed: b+a. But you know that 
the meaning of the expression hasn’t changed because addition 
is commutative. 
 Enter a+a. Commute it. You know that the meaning of the 
expression hasn’t changed. But in this case, you can’t even see 
that its structure changed. As far as you can tell, commuting a+a 
does nothing, as if it didn’t happen. 
 Earlier, we talked about commuting subtraction. This is not 
so simple, and DragginMath has to do other things to make 
subtraction commutable. That is, except for one special case: 
when subtracting something from itself. We know that a-b = 
-b+a. But a-a = a-a regardless of what a is or the order in which 
we write it. So commuting a subtraction of things that are equal 
does nothing. But we also know that a subtraction of things that 
are equal always has the same result: 0. 
 Cancelling the subtraction of equals is something that 
DragginMath needs to do. And there has to be a unique way for 
you to tell DragginMath to do it. So DragginMath uses this 



operation that would otherwise do nothing to do something 
special. 
 Commuting a subtraction of things that are equal 
cancels them into 0. 
 Similarly, commuting a division of things that are equal 
cancels them into 1. 
 If the previous paragraphs seem complicated and pointless 
to you, just remember these last sentences about commuting 
subtraction and division of things that are equal. 
 What if the operands of these subtractions and divisions are 
not simple? What if they are complicated, like ab-ab? That 
works, too. What if they are equal but not written the same, like 
ab-ba or (ab+c)-(c+ba)? Those work, too. If the Commutative 
Property is the only thing needed to show these operands are 
truly equal, DragginMath will figure it out and do what you 
want. If some other algebraic properties are needed to show the 
operands are equal, you will have to help DragginMath by doing 
those operations yourself before cancelling. 

Introducing Replication 

 When thinking about arithmetic, we know that 3∗4 = 12. 
When thinking about algebra, we know that 3∗4 = 3+3+3+3 = 
4+4+4. This is called replication. We sometimes need this to 
solve algebra problems. 
 Enter 3a. Drag 3 up onto ∗. The result is 2a+a. Drag 2 up 
onto ∗. The result is a+a+a. 
 Enter (a–b)4. Drag 4 up onto ∗. The result is (a–b)+(a–b)3. 
You know what to do next. You can take this as far as needed. 
 There will be more to say about replication later. 



Introducing the Rules of Signs 

 Enter - - - - -a. This picture looks different from the others 
we have seen. This is less of a tree and more of a stalk, because 
it is composed of only unary operators. Drag a onto the topmost 
operator. The result is -a. This is because two negatives are the 
same as nothing at all. In this example, two separate pairs of 
negate operators cancelled each other out, and only one negate 
remains. 
 Enter ÷ ÷ ÷ ÷ ÷a. This becomes ⅟⅟⅟⅟⅟a. Drag a onto 
the topmost operator. The result is ⅟a. This is because two 
reciprocals are the same as nothing at all. In this example, two 
separate pairs of reciprocate operators cancelled each other out, 
and only one reciprocate remains. 
 Enter - ⅟-⅟⅟- - ⅟a. Drag a onto the topmost operator. 
The result is a. In this example, all of these sign operators 
cancelled each other out. They don’t need to be grouped together 
by kind in order to do that. 
 Whenever you ask DragginMath to do anything in an 
operator tree, it first tries to simplify the sign operators in 
that part of the tree. Then it tries to do the thing you wanted. 
 Enter - ⅟a. Drag ⅟ up onto -. The result is ⅟-a. Now drag 
- up onto ⅟. The result is - ⅟a. 
 Enter -(ab). Drag a onto -. The result is -a∗b. 
 Enter -(ab) again. Drag b onto -. The result is a∗-b. 
 Here you see that DragginMath can move sign operators 
into various places you might want them to be. This is critical to 



the solution of some equations. DragginMath won’t move sign 
operators into places it knows they don’t belong. 
 Negate - and reciprocate ⅟ are not the only sign operators 
DragginMath knows about. Another is plus-and-minus ±. This 
coalesces with itself and with negate, so ± - ±a reduces simply 
to ±a. You can move these operators around also, but as with the 
other sign operators, only to the right places. Is this useful? Yes. 
For example, if you use DragginMath to derive the Quadratic 
Formula, you will need this to get to the traditional form. If you 
ever derived (-b±√(b↑2-4ac))÷(2a) on paper, you might not 
have noticed this little thing when you did it. 

Introducing Raise, Root, and Log 

 In traditional notation, x to the second power, or x squared, 
is written x2. In other words, there is no visible exponentiation 
operator symbol. Instead, there is this typographic convention. 
When you see characters written this way, you are expected to 
infer the existence of an operator. 
 Working with pen and paper, this is not a bad way of 
writing math. It might even be a really good way… with pen and 
paper. But when working with a keyboard-driven computer, it is 
really not good. 
 Traditional notation becomes even more of a problem when 
writing roots. For anything but the square root, tiny superscript 
characters are expected to be tucked inside the crook of the 
radical √ character, as in ∛. Writing logarithms the traditional 
way is similarly complicated. 
 All of this places annoying limits on what can be written 
with a keyboard, even when you have a computer that can draw 



such characters on the screen (older computers couldn’t). 
Sophisticated software exists (LATEX for example) to help you 
write traditional math notation, but that software is about writing 
the characters, not doing the math. 
 DragginMath is about doing the math. For you to do the 
math easily, I had to make a few changes to traditional math 
notation. This was not undertaken lightly. I understand the 
magnitude of what I am asking, and the consequences. The 
choice came down to Write it the traditional way vs. Do a lot 
more math a lot more simply. You can try to do both in the same 
app if you want. Good luck. After thinking about this problem 
for weeks, I chose to just do the math. 
 Are these changes huge? No. You will barely notice some 
of them. Two require greater attention. Translating back and 
forth by a human is easy once it is explained. 
 DragginMath has a visible exponentiation operator. It is 
called raise. Its symbol is ↑. If a hardware keyboard is attached 
to your iPad, you can also use a caret ^ (shift-6), which becomes 
↑ at the appropriate time. 
 a↑b is pronounced “a raise b”. 
 This kind of notation is not new. You can find it in some 
programming languages, all spreadsheets, and Google’s 
calculator feature. 
 Traditional math notation uses superscripted exponents, 
such as x. Superscripted exponents of any complexity are 
difficult to write, especially on a computer. DragginMath 
doesn’t write any superscripted exponents, and you don’t either. 
If the left operand is complicated, put it in parentheses. If the 
right operand is complicated, put it in parentheses. In 
DragginMath, your focus is on the operator tree anyway. 



 ↑ also has a unary form, written ↑x. Its implicit base is e. 
This is equivalent to the exponential function ex. 
 a√b is pronounced “a root b”. 
 This is the greatest divergence from traditional notation, in 
which a√b means a times the square root of b. In DragginMath, 
a√b means the a root of b. There is no way around this that 
does not fundamentally cripple DragginMath. If you mean to 
write a times the square root of b, write a∗2√b or a∗√b. 
 Traditional math notation uses superscripted radicals, such 
as ∛. Superscripted radicals of any complexity are difficult to 
write, especially on a computer. DragginMath doesn’t write any 
superscripted radicals, and you don’t either. If the left operand is 
complicated, put it in parentheses. If the right operand is 
complicated, put it in parentheses. In DragginMath, your focus 
is on the operator tree anyway. 
 √ also has a unary form, written √x. Its implicit root is 2. 
This is equivalent to the traditional square root √x. 
 a↓b is pronounced “a log b”. 
 This is the other significant divergence from traditional 
notation. a↓b means ㏒ab. The symbol makes sense because 
log↓ is the inverse of raise↑. 
 Traditional math notation uses subscripted bases, such as a. 
Subscripted bases of any complexity are difficult to write, 
especially on a computer. DragginMath doesn’t write any 
subscripted bases, and you don’t either. If the left operand is 
complicated, put it in parentheses. If the right operand is 
complicated, put it in parentheses. In DragginMath, your focus 
is on the operator tree anyway. 
 ↓ also has a unary form, written ↓x. Its implicit base is e. 
This is equivalent to the natural log function㏑x. 



 Earlier versions of DragginMath wrote logs differently.  
The current way described here is more useful to humans. 
 All of these operators, whether binary or unary, have the 
same operator precedence: higher than multiplication and lower 
than the sign operators. 
 Unlike the four arithmetic operators + – ∗ ÷, which are left 
associative, it is traditional for raise to be right associative. By 
default, this is the case in DragginMath, too, but it can be 
reconfigured to left associative because spreadsheets work that 
way. This configuration affects all of these operators ↑ √ ↓, both 
binary and unary. If your DragginMath is configured one way, 
but you need the other way for a particular expression, writing 
parentheses can always give you what you need. 
 Reconfiguring associativity affects how expressions are 
written, but it has no effect on operator trees. Because the text at 
the top of the screen is regenerated out of the operator trees, you 
can flip this configuration back and forth, and the text form of 
your expressions will always be correct for the current 
configuration. 

Obvious Simplifications 

 Some things are just easy. Why should we make them 
harder? Obviously, we shouldn’t. 
 Enter a+0. Drag 0 up onto +. Obvious, yes? 
 Enter a∗1. Drag 1 up onto ∗. Obvious, yes? 
 Enter 0÷3. Drag 0 up onto ÷. Obvious, yes? 
 Enter 5↑1. Drag 1 up onto ↑. Obvious, yes? 



 DragginMath knows a lot of special cases like this, and it 
handles them directly. But sometimes you must be careful. For 
example, enter 0÷x. Drag 0 up onto ÷. This may be obvious, but 
it is not always correct: what if x is zero? As you will learn later, 
DragginMath doesn’t really object to dividing by zero. But to do 
the right thing in that rude case, DragginMath must know it is 
dividing by zero. It doesn’t know that here, and you don’t either. 
You must take note of this as you solve a problem. If anything 
special must happen because of this, you must do it. This app is 
your assistant, not your replacement. 

Converting Binary and Unary Equivalents 

 DragginMath has lots of binary and unary operators. Most 
of these go together in pairs. For example, unary minus (negate) 
is the same as subtracting from zero. Unary divide (reciprocate) 
is the same as dividing into one. And raise, root, and log all have 
both binary and unary forms. 
 If you have a unary form and you need the corresponding 
binary form, flick down on it (this may require a little practice). 
The binary form appears with the correct default operand. For 
example, flicking down on the - in -x changes it into 0–x. 
 Or you might need to go the other direction. If you have a 
binary form with its default unary operand, drag the unary 
operand up onto the operator. The corresponding unary form 
appears. For example, 0–x becomes -x when you drag 0 onto –. 
 These moves can be useful when factoring or cancelling: 
DragginMath tries to recognize when things that are not very 
different are actually the same, but sometimes it needs a little 
help from you. 



More About Replication 

 Earlier, we saw that multiplication can be converted into 
addition by replication. For example, enter 3x, then drag 3 onto 
∗ to see 2x+x. Repeat the process as far as needed. 
 This also works for raise. For example, enter x↑3, then drag 
3 onto ↑ to see x*x↑2. Repeat the process as far as needed. 
 This also works for addition. For example, enter 3+x, then 
drag 3 onto + to see 2+1+x. Once again, repeat the process as far 
as needed. Yes, this is useful, and sometimes necessary. 

Expanding Numbers 

 Sometimes a number must be broken into smaller parts to 
solve a problem. Double-tap a number to expand it into prime 
factors in the operator tree. Future versions will have this and 
other options for breaking a number into parts. 

Rules of Exponents 

 The operators ↑ √ ↓ can be commuted, associated, 
distributed, and factored in various ways. Although these words 
are not traditionally used in this context, I use them here because 
it is hard to see why they are not, at least in a casual sense. 
Traditional language places all of these things under the general 
heading Rules of Exponents. 



 a↑b = ⅟b√a    by dragging a or b sideways. 
 a↑⅟b = b√a    by dragging a or ⅟sideways. 
 a↑(b+c) = a↑b∗a↑c   by dragging + up onto ↑. 
 a↑(b–c) = a↑b÷a↑c   by dragging – up onto ↑. 
 a↑(b∗c) = (a↑b)↑c   by dragging ∗ up onto ↑. 
 a↑(b÷c) = c√a↑b   by dragging ÷ up onto ↑. 
 (a∗b)↑c = a↑c∗b↑c   by dragging ∗ up onto ↑. 
 (a÷b)↑c = a↑c÷b↑c   by dragging ÷ up onto ↑. 
 (a↑b)↑c = a↑(b∗c)   by dragging ↑ up onto ↑. 
 (a√b)↑c = a√(b↑c)   by dragging ↑ up onto ↑. 
 a↑b∗a↑c = a↑(b+c)   by dragging a up onto a. 
 a↑b÷a↑c = a↑(b–c)   by dragging a up onto a. 
  a↑c∗b↑c = (a∗b)↑c   by dragging c up onto c. 
  a↑c÷b↑c = (a÷b)↑c   by dragging c up onto c. 

 a√b = b↑⅟a    by dragging a or b sideways. 
 ⅟a√b = b↑a    by dragging ⅟or b sideways. 
 a√(b∗c) = a√b∗a√c   by dragging ∗ up onto √.   
 a√(b÷c) = a√b÷a√c   by dragging ÷ up onto √. 
 a√b↑c = (a√b)↑c   by dragging ↑ up onto √. 
 a√b√c = (a∗b)√c   by dragging √ up onto √. 
 (a∗b)√c = a√b√c   by dragging ∗ up onto √.   
 (a÷b)√c = a√c↑b   by dragging ÷ up onto √. 
 a√b∗a√c = a√(b∗c)   by dragging a up onto a. 
 a√b÷a√c = a√(b÷c)   by dragging a up onto a. 
 a√c∗b√c = ⅟(⅟a+⅟b)√c by dragging c up onto c. 
 a√c÷b√c = ⅟(⅟a–⅟b)√c by dragging c up onto c. 



 a↓b = ⅟(b↓a)    by dragging a or b sideways. 
 ⅟(a↓b) = b↓a    by dragging a or b sideways. 
 a↓(b*c) = a↓b+a↓c   by dragging * up onto ↓. 
 a↓(b÷c) = a↓b–a↓c   by dragging ÷ up onto ↓. 
 a↓b↑c = a↓b*c   by dragging ↑ up onto ↓. 
 a↓b√c = a↓c÷b   by dragging √ up onto ↓. 
 a↓b*c = a↓b↑c   by dragging ↓ up onto *. 
 a↓b÷c = a↓c√b   by dragging ↓ up onto ÷. 
 a↓b+a↓c = a↓(b*c)   by dragging a up onto a. 
 a↓b–a↓c = a↓(b÷c)   by dragging a up onto a. 

 There are so many of these, I might easily have missed 
some, either when making this list, or when implementing 
DragginMath. If you know a transformation that DragginMath 
doesn’t do, please tell me about it. 
 If you think DragginMath might be able to do things with 
raise, root, and log that are more complicated than these basic 
examples, you would be right about that. For example, do you 
remember the different ways of invoking general and specific 
distribution of multiplication over addition? Those work here, 
too. Enter a↑(b+c∗d), then drag + up onto ↑. The result is 
a↑b∗(a↑c)↑d. But if you drag b or ∗ up onto ↑, the result is 
a↑b∗a↑(cd). The first example seeks out everything that can 
work in that subtree, but the second example stops where you 
tell it. 
 As always, if you want to know if DragginMath does 
something, think up an example and try it. 



Introducing Absolute Value 

 If you ever make a list of the things in traditional math 
notation that never should have happened, be sure to put the |x| 
representation of absolute value at the top of your list. Yes, we 
need the idea and some way to write it. But it is interesting that 
no programming language has ever tried to implement this 
notation. They always go about writing it a different way. There 
are good reasons for that. For example, consider the traditional 
expression 

|a–2|b+3|c|4–d|| 

There are two ways to interpret this, and there is no generally 
accepted rule for deciding which to use. You might blithely 
assert that people don’t or shouldn’t write expressions like that, 
but a tool like DragginMath doesn’t get to make such assertions. 
It must reliably do something sensible, and I must be able to tell 
you why. 
 DragginMath puts absolute value in the same syntax 
category as negate and reciprocate: a prefixed unary operator. Its 
symbol is ‖. As with all unary operators, you can apply it to 
either a simple operand or to complicated things inside 
parentheses. 
 While DragginMath reads absolute value only in this way, 
you can choose how it writes absolute value: either the same 
way it reads it (for example ‖x), or the way traditional math 
writes it (for example |x|). The traditional way is the default. 



 Perhaps it seems that, if it can write the traditional way, it 
should be able to read that way, too. Unfortunately, computer 
code that reads is completely different from computer code that 
writes: they have nothing to do with each other, and each has its 
own set of limitations to deal with. 
 Just as redundant signs are always cleaned out of an 
expression before DragginMath does anything else with it, 
redundant absolute values are cleaned out, too. And just as 
DragginMath can move sign operators around to equivalent 
places, it can move absolute values, too. 

Doing Arithmetic 

 Yes, DragginMath does arithmetic. But it is not a calculator 
in the ordinary sense. The screen keyboard does not even have a 
decimal point. This is not an oversight. By design, DragginMath 
does integer arithmetic only. This is appropriate for a tool whose 
main focus is algebra. When doing arithmetic, DragginMath 
may do things that surprise you, but they won’t surprise your 
algebra teacher… much. 
 Up to this point, we have seen Red Mode, Purple Mode 
(commute and cancel), and Blue Mode (most other algebra). 
Now we will use Green Mode, whose main purpose is doing 
arithmetic. 
 Enter 2∗3+8÷2. Drag 3 down until it turns green. Now drag 
it up onto ∗ and drop. The result is 6+8÷2. Drag 8 down until it 
turns green. Now drag it up onto ÷ and drop. The result is 6+4. 
Drag 6 down until it turns green. Now drag it up onto + and 
drop. The result is 10. 



 This process allows you to see as much arithmetic as you 
need to be sure you understand the result. But most of us 
understand arithmetic pretty well, and doing one operation at a 
time is tedious. So let’s try something that goes a little faster.  
 Use ↩  to go back to the beginning of this exercise. Drag 
any of the numbers in 2∗3+8÷2 down until it turns green. Now 
drag it up onto +. The result is 10. You can evaluate a subtree of 
any size this way. This kind of action is typical of DragginMath 
operations. 
 But there are even more efficient ways if you care to learn. 
 Undo back to the beginning again. Drag 3 down until it 
turns green. Now drag it back up onto 8. The result is 10. 
 What just happened here? DragginMath evaluated the 
smallest common subtree between 3 and 8. In this case, that is 
everything under the +. As far a DragginMath is concerned, this 
is the same as what you did before, because + subsumes 
everything under it, including the 8. You just didn’t know that 
was the reason. If that doesn’t make sense to you, don’t worry 
about it. You have choices in how to make arithmetic happen, 
and you can choose whichever one you like best. 
 Enter 2∗3∗4. Drag the 4 down onto the 3. The result is 24. 
Once again, DragginMath evaluated the smallest common 
subtree between 3 and 4. But in this case, you didn’t have to 
drag down, then back up. You could just drag directly from one 
operand to the other. The direction happened to be downward, so 
you entered Green Mode without any extra motion. Things often 
just happen to work out that way. But due to the shape of some 
operator trees, these Green Mode For Free moves are not always 
possible. With a little practice, you will soon become adept at 



invoking arithmetic with the smallest motion, whatever that 
happens to be. And even if you don’t, the results are the same. 

The Nature of DragginMath Arithmetic 

 DragginMath only does integer arithmetic. There are no 
decimals. There are no fractions. If there were fractions, they 
would be unit fractions only (look for this in a future release). 
 The result of addition, subtraction, and multiplication of 
integers is known in advance: it will always be another integer. 
But the result of division might not be. If you evaluate 12÷4, the 
result is 3, an integer. But if you evaluate 4÷12, the result is 1÷3. 
This is as far as DragginMath will go with this. For classical 
algebra problems, this is the answer. Numbers like 0.333333333 
are of no interest here. Understanding why 1÷3 is the answer 
here is one of the more challenging things students have to learn. 
 When you ask DragginMath to divide, the result always 
comes to you in lowest terms. You don’t have to ask for this. 
DragginMath just does it. Even complicated fractional 
arithmetic is easy. For example, enter 3÷5+4÷7–2÷3–3÷105. 
Drag 105 down onto 5. The result is 10÷21. 
 Division is not the only troublemaker when it comes to 
arithmetic. Root and log cause their own problems. For example, 
enter and evaluate √49. The result is 7. Enter and evaluate √50. 
The result is 5∗√2 (note the ∗, which is optional in traditional 
notation, but necessary in DragginMath). Enter and evaluate 
√51. The result is √51. All of these results are correct in the 
context of algebra. 
 These nice integer results happen efficiently because 
DragginMath keeps a Factorization Cache. Whenever it needs to 



divide, reduce roots, or evaluate logarithms, it looks in the 
Cache for the necessary factors, then uses them the same way 
you would if you were doing this work on paper. The Cache 
computes and then remembers all factors your work actually 
needs. When a factorization is needed again, it is already there. 
The Cache expands as needed, constrained only by the amount 
of memory in your device. In extreme circumstances, you may 
be aware of a small delay caused by Cache expansion. Usually, 
you will not notice. It is possible to kill this app by working with 
numbers so large that the resulting Cache won’t fit in your 
machine. On our test machines, this requires numbers greater 
than 100,000,000. Your results may vary. Of all the things 
DragginMath could do to contain this risk (it is not a bug), 
simply letting it die suddenly when the Cache becomes too large 
might be the least obnoxious. Sorry, but this is a case of raw 
reality overriding all other considerations. 
 There are other problem areas in arithmetic. For example, 
what is 1÷0? What is 0÷0? These are questions that classical 
algebra doesn’t like to answer, and with good reason. But 
computer programmers need answers to these questions, also 
with good reason. DragginMath has answers. They are derived 
from the IEEE-754 Math Standard, which has been tucked away 
inside most computers since the 1990s. The problems classical 
algebra has with these questions haven’t gone away, but even 
beginning mathematicians need to be aware of these issues and 
what the modern world is doing about them. To learn more, see 
the article “About Writing Math on a Computer” found on 
DragginMath’s main ℹ  page, or on the brising.com website. 
 What about √⁻1? Look for complex arithmetic in a future 
version of DragginMath. 

http://brising.com


More About Signs 

 Traditional notation uses the dash – in three different ways: 
subtraction, negation, and negativity. Subtraction and negation 
are operators, but negativity is a property of actual numbers. 
 Sometimes you need to separate a number from its sign. 
Flick down on a negative number to do this. 
 Sometimes you need to combine a number with a sign 
operator. Drag the number up onto the operator to do this. 

Evaluation Does More Than Arithmetic 

 It would be easy to say that Green Mode exists only to do 
arithmetic, but it does other things, too. If you are the curious 
type, this is an opportunity to explore the relationship between 
arithmetic evaluation and algebraic expansion. 
 Enter (x+y)(x−y). You could use the Distributive Property 
(remember: that’s in Blue Mode) to expand this expression by 
dragging either + or – up onto ∗. Instead of doing that, you can 
drag an x down into Green Mode, then drop it on the other x. 
The result may surprise you, but it is correct. No arithmetic is 
performed, but DragginMath’s evaluation strategy can deliver 
results like this in many situations. Try evaluating (a+b)↑3 by 
dragging 3 down onto b. As Steve Jobs used to say in his demos:  

 Blammo! 
Screen Management 



 The result of the last example, evaluating (a+b)↑3, uses 
more screen space than many devices have to offer. 
 One way to deal with this is to switch to the small font, 
which is done via the ≡ button. The change is immediate upon 
returning from the ≡ screen. If you use an iPhone instead of an 
iPad, the small font is the only one available. This is intentional. 
 You can also move an operator tree as a whole by dragging 
its root. Be aware that some DragginMath actions cause your 
trees to redraw at the upper edge of the screen, so your careful 
placements may be in vain. Perhaps a future version of 
DragginMath won’t do this. 
 You can also move all trees on the screen by dragging your 
finger on whitespace, assuming there is any. 
 You can also cause all trees on the screen to line up in the 
upper left corner by double-tapping on whitespace. 
 If your work involves several expressions on the screen at 
the same time, you might not need all of them all of the time. If 
an expression is no longer useful, while others on the screen are 
still necessary, flick left on the root of the tree you no longer 
need. A dialog then asks if you really want to discard it. 

Solving Equations 

 After all this time, you are probably wondering how to 
solve an equation using DragginMath. 
 Enter 3x+4=10. Drag 4 up onto =. The result is 3x=10–4. 
Evaluate 10–4. The result is 3x=6. Drag 3 up onto =. The result 
is x=6÷3. Evaluate 6÷3. The result is x=2. 
 The various Properties of Equality at the foundation of 
“solving for x” are all invoked by dropping things on =. What 



DragginMath then does internally is equivalent to the classic 
mantra of algebra: “Do the same thing to both sides.” You don’t 
see that dual action happening, but you do see the result. That’s 
all you need to know to solve in DragginMath. Really. 
 Use ↩  to rewind the previous example to the beginning. 
Let’s do it a little faster this time. Starting from 3x+4=10, drag 3 
up onto =, then drag 3 down onto 4. The result is still x=2. 
 In complicated examples, some people have a hard time 
remembering what to drag onto =. This analogy might help. 
 Imagine there is a loose pile of sticks in your yard. It is 
quite a pile, maybe several feet high. And for some reason, you 
drop your phone onto the pile of sticks. It falls farther and 
farther into the pile, until finally you see it through the gaps in 
all those sticks, lying on the ground. Of course, you want to get 
it back. There are two ways you might try to do this: 
 1) Reach down into the pile, hoping your arm is long 
enough to grab your phone down there on the ground. 
 2) Pull the sticks away, one or several at a time, until your 
phone is left by itself with no more sticks around or over it. 
 When solving equations in DragginMath, we use the 
second method: pull everything else away from what you want 
to find. Whatever you pull away, drag it up in Blue Mode and 
drop it on =. The relevant operators will be inverted onto the 
other side. You can do this one at a time, or several at a time. 
DragginMath is good at this. 
 There is one possible complication. In a minimal example, 
let’s say you have x=2. Drag 2 up onto =. DragginMath shows a 
dialog asking if you want to use subtraction or division to make 
this change, or maybe if you want to cancel the change. If you 
choose subtraction, the result is x–2=0. If you choose division, 



the result is x÷2=1. Sometimes, this is useful. Usually, it means 
you tried to pick up the whole pile of sticks and walk away with 
it when you didn’t really intend to do that. If this is what 
happened, choose to cancel the change and think about what you 
really meant to do. In this minimal example, there isn’t anything 
else you can do. 

Full vs. Partial Solution 

 Enter x+2=5, then drag 2 up onto =. The result is x=5–2. 
But what about “Do the same thing to both sides”? It appears 
that DragginMath did two different things, one to each side. 
 That’s because, by default, DragginMath likes to clean up 
after itself. Would you like to see the whole process? You can. 
Tap the hamburger button ≡, then choose Solve Part and tap 
OK. Let’s solve this equation again. 
 Enter x+2=5, then drag 2 up onto = to get x+2–2=5–2. Now 
you can see that DragginMath subtracted 2 from both sides. On 
the left side, drag + up onto –. This associates the 2s together as 
x+(2–2)=5–2. Drag either of the 2s sideways past the other to 
cancel into x+0=5–2. Drag 0 up onto + to simplify as x=5–2. 
You will quickly tire of doing these repetitive cleanup steps, but 
you must understand that they need to happen. 
 When you first install DragginMath, it assumes you want to 
Solve Full, where equations are automatically cleaned up after 
each move. But if you are truly new to algebra, you may want to 
use Solve Part for a while so you can see and be involved with 
everything that has to happen for algebra to work correctly. Be 
sure to clean up immediately after each move involving =. If you 
don’t, your equations will quickly become too complicated to 



understand. After you become comfortable with this aspect of 
algebra, switch to Solve Full, but always remember these steps 
that DragginMath is doing for you. 

More Absolute Value & Plus-and-Minus 

 Solving equations involving absolute value can be tricky. 
So it is helpful to have a working relationship between absolute 
value ‖ and plus-and-minus ±. In DragginMath, if you drag ‖ 
onto =, it becomes ± on the other side. If you drag ± onto =, it 
becomes ‖ on the other side. 
 How does DragginMath evaluate ‖? First, it eliminates any 
- or ± or ‖ operators within reach, as they no longer have any 
effect under ‖. Whatever remains under the ‖ is evaluated. If the 
result is a negative number, it is converted to positive. Anything 
else is left as it is. 
 How does DragginMath evaluate ±? It doesn’t. Evaluating 
an expression containing ± may result in a simpler expression, 
but it will still contain ±. To move beyond this, double-tap ± in 
the operator tree. The result is two operator trees, separate and 
almost equal: one for the positive case, and one for the negative 
case. You may then proceed to evaluate the separate cases. 

Still More About Signs 



 Mentioned earlier: whenever you ask DragginMath to do 
anything in an operator tree, it first tries to simplify the sign 
operators in that part of the tree. If you already know algebra, 
you will recognize that you do this, too. There are rules for this, 
and fully simplifying a long chain of sign operators all at once 
can be complicated business. Experienced humans often make 
subtle adjustments to exactly how they simplify signs based 
on what they intend to do next. 
 But DragginMath isn’t human, and it doesn’t know what 
you intend to do next. It only knows what you are telling it to do 
now, so it simplifies sign chains in only one way that is known 
to be safe in all cases. Because of this, changes to expressions 
with complicated sign chains always give a result that is correct, 
but it may not be the exact result that you want. 
 Sometimes, DragginMath moves part way through a multi-
step change, then stops because there is no clear path forward 
through what remains. It is even possible that the node you you 
dragged was simplified away and no longer exists. It is up to 
you to notice this has happened. Then you must tell 
DragginMath how to proceed from where it stopped. 
 If you move only one operator at a time, you will not 
encounter this issue. For some problems, that is the right thing to 
do, even for sophisticated users who like to make large changes 
in single moves. 

Combinatorics 



 DragginMath implements factorial in its traditional 
symbolic form: a postfix ! operator, for example 5!. Its 
precedence is higher than the exponential operators and lower 
than the sign operators. 
 Using current Apple hardware, values up to 20! can be 
computed in Green Mode. Larger values remain in symbolic 
form. The factorial of 0 is 1. The factorial of any negative 
integer is ? (NaN or Not-a-Number, once again from the 
IEEE-754 Math Standard). 
 What about Blue Mode? Drag the 5 in 5! up onto !. The 
result is 4!*5. Now drag the 4 up onto !. The result is 3!*4*5. 
You can do this as far as needed. 
 Factorial has no widely recognized inverse, so attempting 
to solve for x in x!=6 currently does nothing. 
 Permute and Combine operators are in development. 

More Relations 

 You have seen how to solve in DragginMath: drag things 
up onto =. There are also inequality relations: < ≤ ≠ ≥ >. Use 
them just as you use =. 
 Relations are not really operators, but DragginMath works 
with them as if they were. The formal language of mathematics 
is different for relations and operators, but for all intents and 
purposes, relations are composable, commutable, and associable. 
This means DragginMath can build them into operator trees, just 
as with true operators like + or ∗. And you can drag them 
around, just as with true operators. 
 What won’t a relation do? It won’t evaluate. This might 
change in the future, but for now DragginMath leaves it to you 



to recognize that 3=3 and 5<7 are true, and that 2>9 just can’t be 
right. If you try to evaluate relations, DragginMath will do 
everything but the relations. For example, evaluating 2∗2=1+3 
gives the result 4=4. 
 If you commute any relation in a chain, for example by 
dragging 3 sideways in 3<5<7, the whole chain reverses the 
sense of the relation, leaving the result 7>(5>3). You can then 
reassociate to get 7>5>3. 
 DragginMath solves simple linear inequalities correctly, 
just as it does with equalities. More complicated inequalities 
are another matter. For any relationship that has a piecewise 
solution, stronger tools are needed; most non-linear relationships 
and anything involving absolute value are in this category. 
DragginMath can help you carry out the techniques required for 
their solution, but you must know what they are, when they are 
needed, and how to use them. 

Substituting Values in Expressions 

 Sometimes you must substitute one value for another in an 
expression. DragginMath can do this. 
 When substituting, you must have at least two expressions 
on the screen, and at least one of them must be an equation. 
Enter 5x↑2+6x–7; x=3. From the equation, drag x into either 
Blue Mode or Green Mode, then onto – in the other expression. 
The result is 5∗3↑2+6∗3–7; x=3. All occurrences of x in the 
expression were replaced with 3. Since we are just playing with 
this, you could then use the other side of the equation to replace 
all occurrences of 3 with x. 



 The old value you are replacing does not have to be simple. 
The new value you are substituting does not have to be simple. 
For example, enter 5x↑2+6x–7; x↑2=a+b. Drag ↑ from the 
second expression onto – in the first. The result is 5(a+b)+6x–7. 
 Remember that substitution is a Blue or Green Mode 
operation. If you are in another mode, substitution doesn’t work. 
Users often forget this and have a frustrating experience. 
 Substitution is both powerful and dangerous. It is safer in 
DragginMath than in some other systems that provide this kind 
of behavior, but you must still be careful here. It is so easy to do 
so much without envisioning all the consequences or noticing all 
the results. For example, enter 3x÷2; x=3. Drag x in the 
equation up onto ÷. The result is 3∗3÷2; x=3. No problem there. 
Now drag 3 in the equation up onto ÷ to reverse the process. Do 
you see what happened? This is exactly what you asked for but 
probably not what you wanted. What can be done about this? 
You don’t have to drop a substitution on the root of a tree: you 
can drop it anywhere. So you can drag the 3 in the equation up 
and directly onto the x you actually want to change in the other 
expression. Then you must deliberately look for any other 
instances you want to change, instead of letting DragginMath 
find them all for you from the root. 
 This is not to deter you from using substitution, but please 
be attentive and cautious (and remember: Blue Mode or Green 
Mode, but not Red or Purple Mode). The equation you save 
may be your own. 

Named Expressions 



 If you do a lot of work with a particular expression, for 
example the Pythagorean Equation or Quadratic Equation, you 
might get tired of typing it all the time. It would be nice to enter 
an expression once, give it a name, and have DragginMath 
remember it that way. So let’s do that. 
 You might have noticed a ≡ symbol on the screen keyboard. 
You also see this symbol in the upper right corner of the screen: 
the hamburger button. But on the screen keyboard, this symbol 
has a more mathematical meaning: define. Both meanings have a 
lot of tradition behind them, each in their own context. 
 In DragginMath, ≡ is actually a binary operator. The left 
operand is the expression you want to remember. The right 
operand is the expression’s name. When you tap ≡, the screen 
keyboard shifts to uppercase. Enter a single uppercase letter to 
name your expression, for example P or Q. 
 The text you enter might look like this: a↑2+b↑2≡P 
 DragginMath remembers this until you change it. When 
you want to use P, tap 🔠  to shift the keyboard, then tap P. The 
defined expression a↑2+b↑2 appears in your input when you do 
this, and the keyboard shifts back to lowercase. 
 Would you like to review your definitions? Instead of 
tapping ≡, swipe your fingertip sideways off it. This raises a 
screen showing all definitions. Swipe up and down to see the 
whole list. If you want to delete a definition, swipe left on it to 
expose the delete button. If you want to use a definition, double 
tap it in the list. If you only want to look, tap OK at the bottom 
when you are done. 
 Notice some things about how defined expressions appear 
as operator trees. You don’t see the ≡ operator in the tree. Only 



the uppercase name is there, set off to the side. That uppercase 
name tag is the root of its visible operator tree. If you want to 
move a named expression to a different place on the screen, you 
must drag from its name tag. 
 ≡ is not equivalent to =. It exists for this purpose only: to 
define expressions. This operator is not commutable, and the 
expression’s name comes after the operator. The precedence of ≡  
is very low and it cannot be embedded in larger expressions. 
However, named expressions can be used inside the definitions 
of other named expressions, including redefinitions of 
themselves, for example P=c↑2≡P. As seen throughout all of 
DragginMath, you may only enter expressions that are correct 
and complete. That means you can’t define incomplete 
expressions that expect completion by the context in which they 
appear. There are situations where you might want that, but 
DragginMath won’t do it. 

Bringing It Forward (Implied Result) 

 Most problems are solved in DragginMath by entering an 
expression, then moving toward a solution just by dragging 
things around. Sometimes, that is not enough. You may discover 
that your current expression must be embedded in some larger 
expression in order to move forward. It would be bothersome 
and error-prone to retype the previous expression into the new 
one, so DragginMath doesn’t make you do that. 
 If you ever want to include the previous expression in the 
new one, enter empty parentheses ( ) wherever the previous 
expression needs to sit in the new one. The previous expression 
then appears inside these parentheses. This is a special case in 



DragginMath’s keyboard language that means only this. If the 
previous top text was actually several expressions separated by 
semicolons, a dialog appears asking which one you want to use. 
 This use of empty parentheses originated in the HP-71 
calculator. It turns out to be useful here, too. 

Distributing Over Relations 

 The classic mantra of elementary algebra is “Do the same 
thing to both sides of the equation.” For most problems, you do 
this in DragginMath whenever you drag something up onto = or 
any other relation. 
 Sometimes, the thing you need to do to both sides isn’t in 
the relation. It may not even exist anywhere on your current 
screen, and if it is not there, you can’t work with it. 
 Let’s say (just for an example) you have worked a problem 
down to 3x+1<7. Now, you realize you need to multiply both 
sides by 2 (Why? Remember: this is just an example!). 
 Tap the top text to start a new expression, then enter ( )∗2. 
The result is (3x+1<7)∗2. Now drag < up onto ∗ and see 
(3x+1)∗2<7∗2. Both sides of the relation have been multiplied 
by 2, just as you needed to do. This is like the Distributive 
Property, but it distributes any operator over any relation. You 
can even do this with complicated multi-operators like +ab÷c. 
 Some caution is required. If you negate a relation x<y, for 
example, the two operands of the relation automatically swap 
with each other: -(x<y) becomes -y<-x. This is correct. But what 
if you multiply an inequality by -a? DragginMath swaps the 
operands, but this is only true if a is positive, and DragginMath 



has no way of knowing if that is really the case. Maybe you 
don’t know either, so pay attention. 
 This is not the only way this problem arises. You must be 
aware of these issues, which DragginMath cannot fix for you. 
This is a tool, and any tool has limitations. This is one of them. 
You must understand the algebra that DragginMath is helping 
you do and make sure it has done the right thing. 

Adding Equations (Superpose) 

 Some solution techniques require you to add one equation 
to another. If you have a=b; c=d, drag the = of the first equation 
onto the = of the second equation (this works in either Blue 
Mode or Green Mode, but not Red or Purple Mode). The 
result is a=b; c+a=d+b. 
 The dragged node must be =, but the target node can be any 
relation. 
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